Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method.
نویسندگان
چکیده
Applying nanotechnology to plant science requires efficient systems for the delivery of nanoparticles (NPs) to plant cells and tissues. The presence of a cell wall in plant cells makes it challenging to extend the NP delivery methods available for animal research. In this work, research is presented which establishes an efficient NP delivery system for plant tissues using the biolistic method. It is shown that the biolistic delivery of mesoporous silica nanoparticle (MSN) materials can be improved by increasing the density of MSNs through gold plating. Additionally, a DNA-coating protocol is used based on calcium chloride and spermidine for MSN and gold nanorods to enhance the NP-mediated DNA delivery. Furthermore, the drastic improvement of NP delivery is demonstrated when the particles are combined with 0.6 μm gold particles during bombardment. The methodology described provides a system for the efficient delivery of NPs into plant cells using the biolistic method.
منابع مشابه
Thiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery
The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...
متن کاملGold Functionalized Mesoporous Silica Nanoparticle Mediated Protein and DNA Codelivery to Plant Cells Via the Biolistic Method
Recent advancements in the synthesis of monodispersed, large average pore diameter mesoporous silica nanoparticle (MSN) materials with highly functionalizable surface area ( ≥ 400 m 2 g − 1 ) and pore volume (1.05 cm 3 g − 1 ) has led to the development of a series of biomolecule delivery vehicles, where various proteins, small DNA and RNA sequences, and other biomolecules are loaded into the m...
متن کاملBreakthrough Technologies Mesoporous Silica Nanoparticle-Mediated Intracellular Cre Protein Delivery for Maize Genome Editing via loxP Site Excision1,2[W][OPEN]
The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified “nontransgenic” plants. In this work, we explore direct protei...
متن کاملThiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery
The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...
متن کاملSynthesis and characterization of CdS nanoparticle anchored Silica-Titania mixed Oxide mesoporous particles: Efficient photocatalyst for discoloration of textile effluent
An efficient photocatalyst consisting of CdS nanoparticle dispersed mesoporous silica-titania was prepared using amphiphilic triblock copolymer P123 as template and silica-titania sol–gel precursors. The CdS nanoparticle was incorporated into silica-titania mesoporous nanosturctures by post impregnation method. The synthesized catalyst has been characterized by FTIR, TEM, SEM, and EDAX analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2012